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Abstract. A general recursion method for calculating the exact local spin-wave Green 
function in an arbitrary ferromagnetic interface, superlattice and disordered layer structure 
is developed. The method is applied to magnetic insulator structures described by a nearest- 
neighbour exchange Hamiltonian. It is shown that the complete response function of an 
arbitrary layer structure can be generated from a single matrix element of the Green function 
in the surface plane of a magnetic overlayer. The proposed algorithm for overlayers is very 
simple, computationally stable and extremely accurate. The method is used to determine 
the exact exchange stiffness D of a ferromagnetic superlattice and of a disordered layer 
structure. The range of validity of the exact result for D is discussed in the light of recent 
experiments on the temperature dependence of the surface magnetisation. The application 
of the method to ferromagnets with long-range exchange interactions and to metallic layer 
structures is also discussed. 

1. Introduction 

Interest in magnetic overlayers, interfaces and superlattices arises since they hold the 
promise of new device applications with properties such as microwave response subject 
to design (Griinberg 1985). They also have potential applications in magnetic infor- 
mation technology (see e.g. White 1985). More fundamentally, it is now possible, using 
atomic-beam deposition, to create novel layer structures with properties quite different 
from the bulk properties of the constituents (Arrott et a1 1987, Bader and Moog 1987). 

Magnetic layer structures are also interesting theoretically since they are the simplest 
magnetically inhomogeneous systems for which first-principles calculations are feasible. 
In fact, the ground-state properties of some metallic layer structures and superlattices 
have already been calculated within the local spin-density-functional formalism (see e.g. 
Freeman and Fu 1987). 

Apart from the ground state, the most important characteristic of a magnetic layer 
structure is its dynamic response function. It determines the dispersion of magnetic 
excitations, spin-wave stiffness of the structure, neutron scattering cross sec:ion and also 
the local density of spin-wave states which is required in the calculation of the local 
magnetisation, 

For an insulating magnetic structure, the response function reduces to the Green 
function G = ( E  - H)-' of the exchange Hamiltonian H of the structure. We shall 
loosely refer to G as the spin-wave Green function. The spin-wave Green function can 
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be also defined for a ferromagnetic metal (Mathon 1988a) and it determines completely 
its response function (Mathon 1983, 1988a). 

The spin-wave Green function is, therefore, a quantity of central importance. The 
purpose of this paper is to describe a general recursion method for calculating the exact 
local spin-wave Green function in an arbitrary ferromagnetic overlayer, interface, 
superlattice and even disordered layer structure. The method is a generalisation of an 
algorithm we have developed for magnetic overlayers (Mathon and Ahmad 1988, 
Mathon 1988b). 

The plan of the paper is as follows. First the recursion method for overlayers is briefly 
reviewed in 3 2. The generalisation of the method to interfaces and superlattices is 
described in 90 3 and 4. Finally, exact results for the exchange stiffness of a superlattice 
and of a disordered layer structure are derived in 0 5 and compared with the exact results 
for a classical disordered ferromagnetic chain (Harris and Kirkpatrick 1977). 

For simplicity, the method is explained for insulating layer structures described by a 
nearest-neighbour exchange Hamiltonian. The atomic planes of the layer structure are 
assumed to be parallel to the (100) plane. Generalisation to a longer-range exchange is 
quite straightforward and is described in § 6. Aplication to metallic layer structures is 
also briefly discussed in § 6. 

2. Magnetic overlayers 

Consider amagnetic overlayer consisting of Natomic planes labelled by n = 1 , 2 ,  . . . , N .  
The overlayer is located above the (1 00) surface of a sc ferromagnet occupying the half- 
space z < 0. The exchange Hamiltonian of the system expressed in terms of the Bose 
spin raising and lowering operators b,t , and b, is 

where 

H,, = -(S,Sm)”’Jnm 

H n n  = C S m J n m  
m # n  

(n f m) 

and n and m label lattice sites. We have Jn,n+l = J and S, = S in the substrate, but the 
exchange integrals between neighbouring atomic planes and within different planes of 
the overlayer are arbitrary (ferromagnetic). The local spin S, in any atomic plane of the 
overlayer is also arbitrary. The spin-wave Green function of the Hamiltonian (1) is 
defined by 

G = ( E  - H)-’. (2) 
Because of translational symmetry in the (100) plane, we shall calculate G in the 

mixed representation G,,(q, E ) ,  where n and m now label planes parallel to the (100) 
plane, q is the two-dimensional wavevector from the surface Brillouin zone -n/a < qx,  
qy < n / a ,  and a is the lattice constant (see e.g. Kalkstein and Soven 1971). 

We shall show in 39 3 and 4 that the complete response function of an arbitrary layer 
structure can be generated from a single matrix element GNN(q, E )  of the Green function 
in the surface plane n = N of an overlayer. In principle, this key matrix element could 
be calculated by one of the traditional recursion methods for the Green function (see 
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e.g. Haydock 1982, Lopez Sancho eta1 1985 and references therein). However, aserious 
disadvantage of all these methods is that they are iterative and give only an approximate 
GNN. In the applications described in 09 3-5, an exact rather than approximate Green 
function is required. We have, therefore, developed a new version of the recursion 
method which gives the exact surface Green function for an arbitrary overlayer (Mathon 
and Ahmad 1988, Mathon 1988b). 

To calculate GNN, we first assume that the overlayer is physically removed from the 
substrate. The matrix element of the exact spin-wave Green function G&(q, E )  in the 
now exposed surface plane of the substrate (n = 0) is assumed to be known (we shall 
show in 0 4 how to determine G&(q, E )  self-consistently). As a next step, we reinstate 
the first atomic plane of the overlayer n = 1 and give a prescription for calculating the 
matrix element G:, of the Green function in the new surface plane n = 1 in terms of the 
old G&. The superscript ‘1’ indicates that G1 refers to the substrate covered with one 
‘adlayer’. Once Gi, is known, the second layer n = 2 is reinstated and Gi2 is expressed 
in terms of Gil .  This procedure is repeated until the whole overlayer is ‘rebuilt’. After 
N recursion steps, we end up with the exact GEN in terms of G&. 

The general recursion step from a layer n to the layer n + 1 is given by (Mathon and 
Ahmad 1988, Mathon 1988b) 

where 
(Gz; , ,+l)- l  = + Wn+l,n+l - W&t+lGnnn(l- WnflG;,)-l (3) 

w,, = Jn,n+lSn+l 
w,,n+ 1 = -Jn ,n  + 1 (S,S,+ 1) 1’2 

W n + l , n + l  = 2SJ - S n J n , n + l  + - (S,+l/S)(J,+l.,+l/J)I(E - w - 2SJ) 
(4) 

w = E - 6SJ - 2SJ[cos(q,a) + cos(q,a)]. 

Here J,,,+ is the exchange integral between layers n and n + 1, and J,, is the exchange 
integral and S, the local spin in the layer n. 

Equations (3) and (4) provide a very simple and efficient computational algorithm 
for calculating the exact surface Green function of an arbitrary overlayer. The results 
obtained by this method for specific magnetic overlayers have already been discussed 
(Mathon and Ahmad 1988, Mathon 1988b). The method as it stands is applicable only 
to overlayers but it can be easily generalised to interfaces and superlattices. 

3. Magnetic interfaces 

Consider an interface of N atomic planes separating two magnetically homogeneous 
semi-infinite ferromagnets (figure 1). The exchange integrals between neighbouring 
atomic planes and within atomic planes of the interface and the local spin S, in the 
interface are again arbitrary. 

Let us assume that we require the local Green function G,, in the nth layer of the 
interface. To obtain G,,, we first pass an imaginary cleavage plane between the layers 
n and n + 1, separating the whole structure into two independent semi-infinite systems 
(i.e. there are no exchange bonds between the right- and left-hand halves). We can then 
define a Green function Gc’ for the cleaved system by 

n,m E L 

n E L, m E R (or vice versa) 

n,m E R 
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Homogeneous 
ferromagnet ( L  

Figure 1. Cleaved interface of N atomic planes 
separating two homogeneous ferromagnets. Dif- 
ferent types of circle denote atomic planes with 
different magnetic properties. 

where GL and GR are the Green functions for the left- and right-hand halves of the 
cleaved interface. Since each half is just a magnetic overlayer on a homogeneous 
substrate, the matrix elements Gin  and G:+l,,+l can be calculated by the recursion 
method for overlayers described in § 2. 

To determine the exact G,, in the interface we need only to switch on the exchange 
Jn ,n+l  between the layers n and n + 1, and reconnect the two halves using the Dyson 
equation 

When the two halves are being reconnected, both the diagonal elements G;,, and 
G;'+ are perturbed. Since we consider nearest-neighbour exchange only, the per- 
turbation to the diagonal elements is equivalent to the perturbation caused by the 
deposition of a single atomic layer (the surface layer of the other half of the cleaved 
structure), i.e. is again described by the matrix Wdefined in equation (4). It is, therefore, 
useful first to 'prepare' two auxilliary Green functions, GF, and GF+ which include 
this diagonal perturbation. They are given by 

Gn+l = G" + G"WG"+'. 

GZ,, = G,L, (1 - W,,G$,)-' 

GF+I,n+l = GF+ l , n + l ( 1 -  Wn+l,n+lGF+l,n+l>-l (6) 
where W,, and Wn+l ,n+l  are given by equation (4). When these two auxilliary Green 
functions are finally reconnected, only the off-diagonal element Wn,n+l defined by 
equation (4) needs to be considered in the Dyson equation. It is easy to show that the 
required G,, is given by 

Gnn GZn(1 - GZnWz,,n+lGF+1,.+1)-'. (7) 
By passing the cleavage plane between any two atomic planes of the interface, we can 
determine from equations (3)-(7) all the diagonal elements G,,, n = 1,2 ,  . . . , N ,  of the 
exact interface Green function. 

For example, to compute by this method the local density of spin-wave states (DOS) 
in every layer of the interface, all G;, and GF, for n = 1,2 ,  . . ., N are required. Since 
these are just the intermediate Green functions used in the recursion equation (3), one 
only needs to calculate GhN and GYl once and store all the intermediate matrix elements 
in the computer memory. The computational effort needed to evaluate the local DOS in 
every layer of the interface is, therefore, equivalent to the effort required to calculate 
by the method of § 2 the surface density of states for two overlayers (left and right), i.e. 
minimal. 
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Semi-inf inite Superlatti ce 
superlatt ice unit ce l l  

Figure 2. Semi-infinite superlattice with one 
additional unit cell of N atomic planes deposited 
on its surface. Different types of circle denote 
atomic planes with different magnetic properties. 

4. Magnetic superlattices 

Consider a magnetic superlattice with a unit cell of N atomic planes in the direction 
perpendicular to the (100) plane. The exchange integrals Jnn and Jn,n+l and the local 
spin S, in any atomic plane of the superlattice satisfy the periodic conditions 

J n + N , n + N  = Jnn  J n +  N,n+ 1 + N = J n , n  + 1 S n + N  = s n  

but are otherwise arbitrary. 
The calculation of the local Green function in any atomic plane of the superlattice is 

essentially a combination of the methods described in §§ 2 and 3. We again pass a 
cleavage plane between any two atomic planes of the superlattice. Without loss of 
generality, we label these planes by n = 0 and IZ = 1. Let us assume for a moment that 
the two surface matrix elements G h  and GFl of the Green function for the cleaved 
superlattice are known. The exact Green function Gm of the original (uncleaved) 
superlattice is then expressed in terms of G& and GFl via equations (6) and (7). The 
general superlattice problem, therefore, reduces to the calculation of the surface Green 
function for a semi-infinite superlattice. 

We shall assume that a semi-infinite superlattice occupies the half-space z < 0 and 
its surface plane is at n = 0 (see figure 2). The first step in the calculation of the surface 
Green function G& is to deposit on the semi-infinite superlattice, one by one, all the 
atomic planes from a superlattice unit cell. This additional unit cell forms an overlayer 
of N atomic planes above the old surface at n = 0. The Green function GEN in the new 
surface at n = N can, therefore, be again expressed from equations (3) and (4) in terms 
of G& using the recursion method for overlayers. The fact that the ‘substrate’ on which 
the overlayer is deposited is not a homogeneous ferromagnet is immaterial since only 
the surface matrix element G& is required in our recursion method. 

The periodicity of the superlattice implies that the surface at n = N is identical with 
the surface at n = 0 and, therefore, the following self-consistency condition must be 
satisfied: 

G#N[G&(q? = Gk(q,  E )  (8) 
where the bracket [ . . . 3 indicates that GEN is a functional of G&. The explicit form of 
the functional GgN[G&(q, E ) ]  is determined recursively by equations (3) and (4). 
Equation (8) combined with equations (3) and (4) provides, therefore, a simple com- 
putational algorithm for calculating G&. Since G is a complex function, equation (8) is 
equivalent to a system of two coupled non-linear equations for Re G& and Im G&which 
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can be solved numerically for any fixed values of q and E .  
As a simple illustration, we shall use equation (8) to determine the exact surface 

Green function G& for a homogeneous semi-infinite ferromagnet (as promised in 9 2). 
A semi-infinite homogeneous ferromagnet is a trivial special case of a semi-infinite 

superlattice with N = 1. Using Jlo = Jll = J and SI = S in equation (4), it is easy to see 
that Woo = Wll = - Wlo = SJ. We need only one recursion step (3), which means that 
equation (8) reduces to a simple quadratic equation for G&: 

(GO,)-’ = w + SJ - (SJ)2G&(1 - SJC$)-’. 

G&(q, E )  = (2SJ)-’[1 + (W - ~SJ) ’” (W + 2SJ)-”*] 

(9) 
Its solution is the well known result for the surface spin-wave Green function of a semi- 
infinite ferromagnet with (100) surface (see e.g. Mathon and Ahmad 1988) 

(10) 
(of the two roots of equation (9), the root which has the correct analytic properties at 
E + -+CO is chosen). 

5.  Exact results for the exchange stiffness of layer structures 

An interesting application of the method described in 90 2-4 is to calculate the exact 
exchange stiffness constant D of a layer structure. It is also a very stringent test of the 
proposed algorithm since D calculated by this method can be compared with the exact 
results for a classical disordered chain (Harris and Kirkpatrick 1977). 

The exchange stiffness constant D is defined as the coefficient in the dispersion law 
E = Dq2 of a spin wave with a small wavevector q. We shall first discuss the exchange 
stiffness of a magnetic overlayer since we showed in 09 3 and 4 that the spin-wave 
problem for interfaces and superlattices can always be reduced to an equivalent problem 
for an overlayer. 

An overlayer of a finite thickness on a semi-infinite substrate clearly cannot have any 
effect on D since D is a global property of the whole infinite system. The coefficient D 
is, therefore, not a good measure of the local exchange stiffness for an overlayer. The 
correct quantity to look at is the local density of spin-wave states pn(E) at the bottom of 
the spin-wave band. It is given by 

Pn(E) = ( J W - l  Im G n n ( q ,  E )  (11) 
4 

where G,, is the local Green function in the nth atomic plane and N ,  is the number of 
atoms in the surface plane. The local density of states reflects the local spin-wave 
amplitude and, therefore, the local exchange stiffness. For a homogeneous bulk ferro- 
magnet the spin-wave energy at the bottom of the band is E = Dq2 and the global density 
of states is related to D by the well known formula (Kittell971) 

where D = 2SJu2 for a nearest-neighbour sc ferromagnet. It follows that, to determine 
the local exchange stiffness of a magnetically inhomogeneous sytem, it is sufficient to 
examine the initial energy dependence of the local p, (E) .  

All our further discussion is based on an exact result for the surface density of states 
of an arbitrary magnetic overlayer proved by Mathon and Ahmad (1988). It states that 
the initial p N ( E )  in the surface plane N of an overlayer of arbitrary (finite) thickness is 
independent of the exchange in the overlayer and is given by 

pbu’k(E) = ( 2 4  - 2 0  -3/2E’/2 ( 12) 

p N ( ~ )  = 2(s , / s )pbuik(~)  + 0 ( N 2 ) .  (13) 
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Here, SNis the surface spin and pb"Ik(E) is the bulk density of states in the substrate given 
by equation (12). The result (13) is obtained from equations (3) and (11) in the lowest 
order in E.  It shows that not only the global D but even the local exchange stiffness of 
an overlayer is determined completely by the substrate, i.e. quite independent of the 
exchange interactions in the overlayer. It is easy to see using the results of § 3 that the 
same conclusion holds also for any interface of finite thickness. 

The situation for a superlattice is quite different from that for an overlayer since 
there is no infinite substrate. The exchange stiffness D of a superlattice must, therefore, 
be determined by the exchange interactions (and spin) in the superlattice unit cell. It 
can be calculated exactly from equation (13) and the self-consistency condition (8) of 
§ 4. 

It follows from § 4 that it is sufficient to determine D for a semi-infinite superlattice. 
The case of exchange interactions which vary in the direction perpendicular to the 
surface is most important experimentally (Mauri et a1 1988, Siegmann and Bagus 1988). 
To illustrate our method, we shall, therefore, calculate D for a superlattice with 
S1 = S 2  = . . . = S N  = S and J l l  = J22 = . . . = J N N  = J but with arbitrary (ferromag- 
netic) Jn,n+l between the layers n = 0,1 ,  . . ., N - 1. 

Consider first the self-consistency condition (8) for Im G&,. For a semi-infinite 
superlattice with SI = S 2  = . , , = S, = S, the exact result (13) implies that the initial 
Im G",(q, E )  in any surface plane n = 0, 1, . . . , N - 1 must be a universal function of 
E and q independent of n. It follows that, as far as the initial behaviour of 
Im G",((q, E )  is concerned, any semi-infinite superlattice is equivalent to some effec- 
tive homogeneous semi-infinite ferromagnetic medium. The surface Im GO, for a 
homogeneous semi-infinite ferromagnet is given by equation (10). Setting 
Im Gin (4, E )  = F(q,  E ) ,  we find from equation (10) that the universal function F ( q ,  E )  
is given by 

where 

w = E - 4SJ - w ,, - 2SJ[cos(q,a) + cos(q,a)] 

w = 2SJeff 
(15) 

and Jeff is the exchange integral in a semi-infinite effective medium perpendicular to 
the surface which is to be determined self-consistently, Because the initial 
Im G;,(q, E )  is the same in every surface layer of a superlattice, the self-consistency 
condition (8) for Im G$, is a trivial identity which gives no information about Jeff. We 
need to examine Re  GE, at the bottom of the spin-wave band. 

The perturbation matrix W in equation (4) takes a very simple form for a super- 
lattice with exchange that varies only in the direction perpendicular to the surface: 

W n n  = - W n , n + l  = S J n , n + l  W n + l , n + l  = W O  - S J n , n + l *  

To simplify the notation, we shall write Re  GEn(q, E) = R,  and SJn,n+l  = J , .  The 
general recursion step (3) for R, then takes the form 

Rn+1 = {(JnRn - 1 ) [ J n  - (U + mo)(JnRn - 111 + (0 + wo)[JnF(q ,  E)12)Dn (16) 

(17) 

where the denominator Dn is given by 

Dn = {[(a + ~ o > ( l -  J n R n )  - J n 1 2  + [ (U + wo)JnF(q, E>12>-' 
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and w o  is defined in equation (15). At the bottom of the spin-wave band E = 0, the 
condition w = -wo must be satisfied for non-zero F(q,  E )  and it follows from equation 
(14) that F(q ,  E )  can be approximated by 

F(q ,  E )  = (2/w0)l'2(w + wo)-l/? (18) 
Because the factor (w + wo)  multiplying F(q ,  E )  in equations (16) and (17) removes 

the singularity of F(q ,  E )  at w = -wo, we can take equation (16) in the limit E+ 0, 
U+- -coo. The recursion equation (16) assumes a very simple form in this limit, i.e. 

R,+1 = R ,  - l/Jn + 2 / ~ 0  (19) 
and can be easily solved. Imposing now the self-consistency condition (8), i.e. RN = 
Ro, we finally obtain the following result for Jeff: 

N -  1 

( I / J " ~ )  = N-' 2 (1/Jn,n+1>* (20) 
n=O 

The exact exchange stiffness of a superlattice is, therefore, equal to the exchange 
stiffness of an anisotropic homogeneous ferromagnet with an exchange integral parallel 
to the (1 00) plane equal to J and with an exchange integral perpendicular to this plane 
equal to leff. 

Since equation (20) holds for any N ,  it can also be applied to a disordered layer 
structure. A layer structure with a random distribution of exchange in the direction 
perpendicular to the (100) plane can be modelled by a superlattice with a unit cell so 
large that Jn,n+l within the unit cell can be made random. Equation (20) with N+ so 
and random Jn,n+l then gives Jeff for a disordered layer structure. This is precisely the 
result obtained earlier by Harris and Kirkpatrick (1977) for a classical disordered 
chain. 

6. Discussion 

Our recursion method for ferromagnetic layer structures can be compared with 
previous calculations of spin waves in superlattices consisting of two different magnetic 
materials (van Stapele et al 1985, Dobrzynski et a1 1986, Albuquerque et a1 1986, 
Hinchey and Mills 1986) and also with the more general formulations for N-layer 
superlattices (Masri and Dobrzynski 1988, Barnas 1988). 

Our method has several advantages. It is quite general and yet very simple. The 
complete response function for an arbitrary layer structure is generated from a single 
matrix element of the response function in the surface plane of a magnetic overlayer. 
The overlayer calculation itself is based on a very simple and efficient recursion 
algorithm which has already been tested (Mathon and Ahmad 1988, Mathon 1988b). 

The method is computationally very stable and extremely accurate. This means 
that layer structures consisting of a very large number of different atomic planes N 5 
50-100 can be easily handled. Our calculation for overlayers of up to 50 atomic layers 
thick show that the accuracy for N = 50 is just as high as for very small N (Mathon 
1988b, Eva 1988). 

A generalisation of our method to a longer-range exchange is quite straightforward. 
Consider an overlayer of N atomic planes in which each plane is exchange-coupled to 
k other planes. When an adlayer is deposited on a semi-infinite substrate, the exchange 
links coupling the adlayer to the substrate are switched on, one at a time, and with 
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each new link the Green function is recalculated from equation (3). Computationally, 
the problem is, therefore, equivalent to an overlayer of kN atomic planes with nearest- 
neighbour exchange between the planes. The only modification is that the Green 
function in the overlayer surface plane depends now on k diagonal matrix elements 
of the substrate Green function. Our tests (Eva 1988) for overlayers in which each 
layer is coupled to every other layer show that the accuracy for N = 50 is just as high 
as for the nearest-neighbour model. 

In § 5  we determined the exact exchange stiffness D of a superlattice and of a 
disordered layer structure. Exact results for D are available in some special cases of 
disordered ferromagnets. In particular, Harris and Kirkpatrick (1977) showed that D 
is directly related to the conductance of a random resistor network. Essentially the 
same result was obtained recently by Edwards (1988) for a dilute Hubbard model. 
Using this analogy, our equation (20) for a disordered layer structure is equivalent to 
the conductance of a random network of resistors connected in parallel. This is 
precisely the result obtained by Harris and Kirkpatrick (1977) for a classical disordered 
chain. 

Our derivation of the exact D for a layer structure has several interesting features. 
It shows explicitly that an effective-medium approximation for Im G is exact at the 
bottom of the spin-wave band but the real part of G must be treated exactly, i.e. 
multiple scattering from all the layers of a layer structure must be included in Re G. 

It is possible, using our recursion method, to determine the range of validity of 
the exact result for D. The spin-wave energy in a homogeneous ferromagnet is well 
described by E = Dq2 for E up to about k,Tc/3, where Tc is the Curie temperature. 
It is universally accepted (see e.g. Edwards and Muniz 1985) that this result holds also 
for disordered alloys. However, our calculations show that this is certainly not the 
case for layer structures. It was shown by Mathon and Ahmad (1988) that the initial 
law E = Dq2 (effective-medium result obtained from equation (13)) breaks down in 
overlayers for spin-wave energies E as low as E = O.O1k,Tc. This means that the exact 
D for a layer structure is virtually not observable. If this result carries through to 
alloys, all the previous calculations for disordered alloys need to be reconsidered. 

Since D governs the temperature dependence of the magnetisation, it can be 
determined experimentally. Measurements of the temperature dependence of the 
surface magnetisation Ms(  T )  for Ni,oFe40B20 glass (Pierce et a1 1982) and for Fe (1 10) 
surface (Walker et a1 1984, Korecki and Gradmann 1985, 1986) show clearly that 
M,(T)  deviates from the simple Bloch law with the initial exact D (see Mathon 
and Ahmad (1988) for detailed interpretation). Most recently, this problem was 
investigated very thoroughly by Mauri et aZ(l988) using the method of spin polarisation 
of low-energy cascade electrons. They showed quite convincingly that the surface 
magnetisation is not determined by the initial exact D of the substrate, which is in 
complete agreement with our theoretical prediction. 

Our calculation of the exact D is also applicable to metallic layer structures where 
contact can be made with the work of Edwards (1988). It was shown by Mathon (1983) 
that the spin-wave Green function of a metal in the random-phase aproximation is 
exactly equivalent in the long-wavelength limit to the spin-wave Green function of a 
Heisenberg ferromagnet with long-range RKKY exchange integrals. Our calculation of 
D ,  therefore, carries through, but the method would first have to be extended to long- 
range exchange as discussed above. 

An interesting problem arises for disordered metallic ferromagnets. Since the 
RKKY exchange integrals are oscillatory, there is always a random admixture of 
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antiferromagnetic bonds for any disordered ferromagnetic metal. This could lead to 
Anderson localisation of spin waves, a problem touched upon by Edwards (1988). 

Finally, it should be noted that our method is applicable not only to spin waves 
but also to phonons and electrons in the tight-binding approximation since they are 
also described by a Hamiltonian of the form (1). 
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